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Abstract

In fluid-structure interaction (FSI) problems, two different governing equations are solved together. In addition, a

kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined

formulation which incorporates both the fluid and structure equations of motion into a single coupled variational

equation. This does not necessitate the calculation of the fluid force on the surface of the structure explicitly when

solving the equation of motion for the structure. A two-dimensional laminar channel flow divided by a plate and

another two-dimensional laminar flow caused by the oscillation of a vertical plate in a cavity filled with a fluid are

considered to investigate the dynamic FSI between the fluid and the plate. The Navier–Stokes equation modified with

the arbitrary Lagrangian–Eulerian (ALE) technique is solved using a P2P1 Galerkin finite element method (FEM). The

equation of motion for the plate is solved using a Galerkin FEM without considering the internal structural damping

effect. Numerical results for steady channel flow are in good agreement with the existing work of Wang. In addition to

the Reynolds number, two nondimensional parameters, which govern this fluid–structure system, are proposed. When

the Reynolds number and the geometry are fixed, it is noted that the damping of the amplitude of plate oscillation

increases as the dynamic viscosity and the density of the fluid increase, and that the added mass is linearly proportional

to the fluid density but independent of fluid viscosity.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

A variety of physical phenomena caused by fluid–structure interaction (FSI) can be encountered in many engineering

applications, such as the stability and response of aircraft wings, the pulsating blood flow through arteries, the response

of bridges and tall buildings to wind and the vibration of turbine and compressor blades, and the oscillation of heat

exchangers (Dowell and Hall, 2001).

In the FSI problems, two different governing equations are solved together. One is for the fluid and the other for the

structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the

structure. Recent progress in computing power has led to a great advance in computational fluid dynamics (CFD) and
e front matter r 2004 Elsevier Ltd. All rights reserved.
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computational structural dynamics (CSD), so that many researchers are trying to solve the FSI problems by coupling

the equation of motion for the fluid with that for the structure. Nevertheless, to treat the equation of motion for the

fluid in complex FSI problems, most researchers have adopted the Laplace (potential flow) equation (Ergin and Uğurlu,

2003; Lam et al., 2002) or the Euler equation, because they still require substantial computing power without

simplification or modeling. In fact, in some simulations, oversimplifications on the structure side (Frandsen, 1999) or

the fluid side (Kovacs, 1994; Zahlten, 1998) have been made for the FSI simulation, not only because the full simulation

of both the fluid and structure is very complex, but also because the computing power has not been sufficient. More

recently, some research groups (Glück et al., 2003; Slone et al., 2002; Zhang et al., 2003) have tried to solve the full

coupling between the fluid flow and the motion of the structure without resort to assumptions made by previous

researchers. According to Zhang et al. (2003), the fully coupled simulation methods can be grouped into two categories.

In a ‘‘direct computing method’’, fluid variables are determined together with the variables of the structural system

simultaneously. Thus, a global matrix that includes both the fluid variables (velocity and pressure) and the structural

variables (displacement) has to be solved at the same time. Compatibility conditions and a mapping process (Zhang et

al., 2003) need not be considered, because a combined global matrix including both the fluid and the structural variables

is solved simultaneously. On the other hand, we note that the time and effort to develop a directly coupled FSI code

from scratch are the price we have to pay for the sake of robustness and efficiency of that code. In an ‘‘iterative

computing method’’, two separate global matrices, one for the fluid and the other for the structure, have to be solved

sequentially. Some additional constraints such as traction equilibrium and displacement compatibility between the fluid

and structure domains must be imposed by sub-iterations (Glück et al., 2003; Slone et al., 2002; Zhang et al., 2003).

Therefore, an iterative computing method might require more CPU time than a direct computing method due to the

sub-iteration which is repeatedly performed until the whole (fluid plus structure) system has converged. On the other

hand, an iterative computing method has an advantage over a direct computing method in the sense that the modularity

of each of the fluid and structure codes can be maintained. Thus, integration of well-established fluid and structure

codes into a single FSI code is quite possible. It is also noted in passing that a few works using reduced order models

(ROMs) such as proper orthogonal decomposition (POD) have been reported recently (Dowell and Hall, 2001).

Hesla (1991) earlier proposed the combined formulation that incorporates both the equation of motion for the fluid

and that for the structure into a single coupled variational equation. With this formulation, it is not necessary to

calculate the fluid force on the surface of the structure explicitly when solving the equation of motion for the structure.

In other words, fluid traction on the surface of a structure is not a function of known fluid velocity and pressure fields,

but a function of unknown fluid velocity and pressure fields which are to be determined together with the variables of

the structure system simultaneously.

Hu (1996) implemented successfully this combined formulation for the first time in the direct numerical simulation

(DNS) of sedimentation of 100 or 400 particles in a vertical channel due to gravity and a pressure gradient in the

opposite direction to gravity, by adopting the Navier–Stokes equation for the fluid side in conjunction with the explicit-

implicit scheme of Hu et al. (1992) and the arbitrary Lagrangian–Eulerian (ALE) technique where the mesh velocities

are also dealt with implicitly and computed iteratively. He found that particles are away from the wall and there exists a

lubrication layer near the wall when the pressure gradient is sufficiently larger than the gravity force, and that particles

interact strongly and clusters of particles appear as the particle Reynolds number becomes larger. Later, Choi (2000)

proposed a splitting method for the DNS of the fluid–particle problem using the combined formulation, a fractional

four-step method, and the ALE technique, where a symmetric pressure equation was adopted. Choi and Joseph (2001)

performed a DNS of fluidization by lift of 300 circular particles in plane Poiseuille flow using the combined formulation

and the ALE technique. Hu et al. (2001) summarized the methods for numerical simulation of fluid–solid systems and

presented the most up-to-date implementation method for DNS using the combined formulation, the explicit–implicit

scheme, and the ALE technique.

The objective of the present study is to develop a combined formulation that can be used for solving the dynamic FSI

problem. We first investigate the dynamic FSI in a two-dimensional laminar channel flow divided by a plate, because

some analytical solutions of the static counterpart of this problem are available (Wang, 1999), which can serve for

validating the numerical code developed in the present study. Although he investigated both laminar and turbulent

flows, he only considered steady cases, not dynamic FSI problems. However, this problem is associated with a well-

defined geometry and can serve as a basis for more complex FSI problems. The dividing plate can be considered as a

beam, so that we use the Bernoulli–Euler beam model, which is the simplest structural form that can support a bending

moment. Next, we consider another dynamic FSI problem, i.e. oscillation of a vertical plate in a cavity filled with a

fluid, because the results of a three-dimensional coupled simulation for the same FSI problem is also available (Glück et

al., 2001). Although they performed three-dimensional simulations, both the fluid and the plate showed two-

dimensional behavior, because of the symmetric boundary conditions in the spanwise direction. Since the key idea of

the present combined formulation is to treat the traction on the structure due to fluid motion implicitly, the complexity
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of the combined formulation does not increase, even though the governing equation for the structure becomes more

complicated. More details of the coupling (combined) procedure of the present combined formulation, will be given in

Section 2, where it is discussed that this implicit method is stabler than the explicit method. In addition to the Reynolds

number, two nondimensional parameters, which govern the FSI problem, are suggested in Section 3. Validation of the

code developed in the present study is made in Section 4.1. The dynamic FSIs are investigated in Sections 4.2 and 4.3,

where the damping of the plate oscillation and the effect of the added mass on the frequency response of the plate are

discussed. Conclusions are drawn in Section 5.
2. Numerical methods

A P2P1 Galerkin FEM is applied to the Navier–Stokes equation incorporating the ALE technique, and a Galerkin

FEM is applied to the equation of motion for the beam. Then, these two equations are consolidated and solved using

the combined formulation and a modified explicit–implicit scheme.

2.1. Governing equations for the FLUID

The governing equations for the incompressible fluid flow are the Navier–Stokes equation and the continuity

equation. In FSI problems, the interface between the fluid and the structure may change in time and the computational

domain should be changed accordingly. To accomplish this, we adopt the ALE technique, where the mesh velocity um is

computed by solving the Laplace equation with appropriate boundary conditions. Applying a P2P1 Galerkin finite

element method to the Navier–Stokes equation in conjunction with the ALE technique and to the continuity equation,

and invoking the divergence theorem, the problem to be solved and the equations involved are as follows.

Find u 2 H1
hðOÞ; p 2 L2

hðOÞ such thatZ
O

W � rf

qu
qt

þ fðu� umÞ � rgu

� �
þrW : ~s

� �
dO�

I
G

W � ~s � nð ÞdGþ

Z
O

q r � uð ÞdO ¼ 0 (1a)

for all admissible functions W ¼ Vh; q 2 Ph; where

Vh ¼ fWjW 2 H1
hðOÞ; W ¼ 0 on Ggg; Ph ¼ fqjq 2 L2

hðOÞg;

~s ¼ � p ~I þ ~t; ~t ¼ m½ruþ ðruÞT
: ð1bÞ

In the above equation, u is the fluid velocity, p is the pressure, O is the fluid domain, W is the weighting function vector

for the momentum equation [each component of W is a second-order polynomial such that W ¼
P

iðaiF iex þ biF iey þ

giF iezÞ; where ai, bi, and gi are arbitrary constants, Fi (the shape function for the velocity at the ith node point) is a

second-order polynomial, and ex, ey, and ez are the unit vectors in the x-, y-, and z-directions, respectively], rf is the fluid

density, t is the time, ~s is the stress tensor, G is the boundary of O, n is the outward unit normal vector to G, q is the

weighting function for the continuity equation [q ¼
P

iliGi; li is an arbitrary constant and Gi (the shape function for

the pressure at the ith node point) is a first-order polynomial], Gg is a part of G on which the Dirichlet boundary

condition is imposed, ~I is the second-order identity tensor, ~t is the shear stress tensor, m is the dynamic viscosity of the

fluid. The Crank–Nicolson scheme, which is second-order accurate and unconditionally stable, is used for time

integration. Assembling element matrices obtained through the above procedure, the following equation for the global

matrix is obtained:
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In the above equations, (u, v) are the fluid velocity components in the Cartesian coordinates (x, y), (um, vm) are the mesh

velocity components, nf is the kinematic viscosity of the fluid, the superscripts n, n+1 denote the nth and (n+1)th time

steps, respectively, and the subscripts i, j, k denote the ith, jth, and kth nodes, respectively.

2.2. Governing equation for the beam

As previously mentioned and shown in Fig. 1, a two-dimensional plate can be considered as a beam, so that we use

the Bernoulli–Euler beam model, which is the simplest structural form that can support the bending moment. A

Bernoulli–Euler beam element is shown in Fig. 2, which is known to give accurate results when h=DLo0:01:
The governing equation describing the vibration of the Bernoulli–Euler beam is as follows:

rsA
q2w

qt2
þ EI

q4w

qx4
¼ f sðx; tÞ; (3)

where rs is the beam density, A is the beam cross-sectional area, w is the beam displacement, E is Young’s modulus of

elasticity, I is the second moment of the beam cross-sectional area, and f sðx; tÞ is the load per unit beam length.

Applying the Galerkin FEM to Eq. (3), we obtain

M½ 
€dþ C½ 
_dþ K½ 
d ¼ fp;

M½ 
 ¼
R
rsN

TNdV ; dT ¼ wL; yL; wR; yR

� �
; K½ 
 ¼

R
BTDBdx;

N ¼ NwL
; NyL

; NwR
; NyR

h i
; B ¼ � q2N

qx2 ; D ¼ EI ¼ E bh3

12
;

fp ¼
R
NTf sðx; tÞdx;

(4)

where [M] is the mass matrix, d is the displacement vector, (wL, yL) and (wR, yR) are the displacement and the deflection

angle at the left and right nodes of the beam element, [C] is the damping matrix, [K] is the stiffness matrix, N is the shape

matrix, B is the strain-displacement matrix, D is the stress–strain constant, fp is the load vector, and b is the beam depth,
Fig. 1. Schematic diagram of a two-dimensional channel flow divided by a plate.
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which is unity in the present study. The damping matrix [C] ¼ [0] because the structural or internal damping is neglected

in the present study. Applying the average acceleration method or the trapezoidal rule for time integration of Eq. (4),

which is again second-order accurate and unconditionally stable, we obtain

4

ðDtÞ2
M½ 
 þ ½K 


� �
dnþ1 þ b

Z
NT GLpnþ1

L þ GRpnþ1
R
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dx
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4

ðDtÞ2
dn þ

4
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_d

n
þ €d

n
� �

þ C½ 

2

Dt
dn þ _d

n
� �

: ð5Þ

The second term on the left-hand side includes the fluid pressure on the beam at the next time step, which is combined

with the beam displacement implicitly. Through this term, the fluid and the beam interact with each other, which is the

main point of the combined formulation. The reason why this term appears on the left-hand side, not on the right-hand

side, is that the governing equations for the fluid and the beam (structure) are to be solved simultaneously through the

combined formulation, as will be explained in the next subsection.

2.3. The combined formulation and the explicit–implicit scheme

As previously mentioned, the combined formulation was proposed by Hesla (1991) and implemented first by Hu

(1996) for practical application, which incorporates both the equation of motion for the fluid and that for the structure

into a single coupled variational equation so that the fluid forces acting on the surface of the structure do not explicitly

appear in the formulation. This is quite natural, since those fluid forces are internal when the fluid and the structure are

considered as one single system (Hu et al., 2001). In the present combined formulation, the flow variables (u, v, p) and

the beam variables (w, y) are computed not separately but simultaneously by the total global matrix written in the form

Auu Auv Bu 0 0

Avu Avv Bv C 0

ðBuÞ
T

ðBvÞ
T 0 0 0

0 0 Dw Eww Ewy

0 0 Dy Eyw Eyy

2
6666664

3
7777775

u

v

p

w

y

2
6666664

3
7777775
¼

f u

f v

0

gw

gy

2
6666664

3
7777775
; (6)

where the part [C] represents the kinematic constraint, which should be satisfied on the interface between the fluid and

the beam, and the parts [D] and [E] represent Eq. (5) for the beam. The kinematic constraint can be represented as

follows:

u ¼ 0; v ¼ _w on the beam surface: (7)

Most previous studies on FSI problems have conventionally used the explicit scheme, where the procedure is as

follows:
(i)
 compute the flow field with given boundary conditions on the given mesh;
(ii)
 compute the traction on the surface of the structure;
(iii)
 compute the deformation of the structure with the traction given in (ii);
(iv)
 update the meshes both for the fluid and the structure according to the deformation given in (iii);
(v)
 iterate (i)–(iv) until the convergence criteria for both the fluid and the beam are satisfied.
Although the above explicit scheme needs less computational time, it may not converge under certain circumstances

(Hu et al., 1992, 2001). However, the present combined formulation does not have such a problem by virtue of its

implicit nature and is stabler than the explicit scheme. When implementing the combined formulation with the ALE
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technique, it is natural to use an explicit–implicit scheme (Hu et al., 1992, 2001). In the present study, we use a modified

version of the explicit-implicit scheme, where the mesh nodes in the fluid domain are updated explicitly, while the

deformation of the beam, the fluid flow field, and the mesh velocities are determined implicitly, as follows:
(i)
1C
solve the Laplace equation to obtain the mesh velocity with the boundary condition enforcing that it is equal to the

velocity of the beam on the beam surface;
(ii)
 solve the total global matrix (Eq. (6)) for the flow field and the deformation of the beam with given boundary

conditions;
(iii)
 iterate (i)–(ii) until the convergence criteria for both the fluid and the beam are satisfied;
(iv)
 update the meshes for both the fluid and the beam according to the mesh velocity and the deformation of the beam,

respectively;
(v)
 go to (i).
More information on the combined formulation and the explicit-implicit scheme can be found in Hu (1996), Choi

(2000), Choi and Joseph (2001), Hu et al. (2001), and Namkoong (2002).

Overall computation time is reduced significantly by AILU preconditioning [adapted incomplete LU (Nam et al.,

2002)] of the global matrix. Further, the variable reordering and element reordering (Nam et al., 2002) are performed as

bandwidth reduction methods to improve the performance of AILU preconditioning.
3. Nondimensional parameters

To determine the nondimensional parameters governing this fluid–structure system, the Navier–Stokes equation for

the fluid and the Bernoulli–Euler beam equation for the structure are nondimensionalized by adopting the following

definitions:

u� ¼
u

U
; x� ¼

x

L
; p� ¼

p

rf U2
; t� ¼

t

L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsA=ðEIÞ
p ; w� ¼

w

L
; (8)

where U is the characteristic velocity and L the beam length. The resulting nondimensionalized equations are as follows:

1

Rt

qu�

qt�
þ ðu� � r�Þu� ¼ �r�p� þ

1

Re
r�2u�; (9)

q2w�

qt�2
þ

q4w�

qx�4
¼ Rf p�: (10)

In addition to the Reynolds number, Re ( ¼ rfUL/m), two nondimensional parameters appear in the above equations,

which are defined as follows: 1

Rt ¼ UL

ffiffiffiffiffiffiffiffi
rsA

EI

r
¼

L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsA=ðEIÞ
p

L=U
¼

beam time scale

convection time scale
; (11)

Rf ¼
rf U2b

EI=L3
¼

fluid inertia force

elastic restoring force
; (12)

R2
t ¼ Rf

h

L

rs

rf

: (13)

The appearance of the nondimensional parameter Rt is due to the use of the beam time scale ( ¼ L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsA=ðEIÞ
p

) for

nondimensionalizing the time as in Eq. (8), instead of the convection time scale ( ¼ L/U). When Rt is small, the

convection time scale of the flow is larger than the beam time scale and the time derivative term in the

nondimensionalized Navier–Stokes equation (Eq. (9)) becomes large. That is, the beam vibrates many times while the

fluid particle moves by a characteristic length scale L due to convection.

The appearance of the nondimensional parameter Rf is due to the use of the fluid inertia force (¼ rf U2) for

nondimensionalizing the fluid pressure as in Eq. (8), instead of the elastic restoring force of the beam (¼ EI=ðL3bÞ).

When Rf is large, the fluid inertia force is larger than the elastic restoring force of the beam and the beam deforms more.
f. Paı̈doussis’ (1998, 2003) dimensionless flow velocity.
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As is seen in Eq. (13), Rt and Rf are not independent of each other. Once the ratio of the beam height to the beam

length h/L and the density ratio rs/rf are determined, Rt is proportional to the square root of Rf. Eventually, the

nondimensional parameters governing the fluid-structure system considered in the present study can be represented as

follows:

Re; Rt; h
L
; rs

rf

" #
or Re; Rf ; h

L
; rs

rf

" #
: (14)
4. Computational results

4.1. Static fluid–structure interaction in a steady flow

We first perform calculations of a steady two-dimensional laminar channel flow divided by a plate and compare the

results with those of Wang (1999). By assuming that the deformation of the plate is small and the flows are fully

developed, Wang (1999) derived equations for the pressure and shear stress on the upper and lower surfaces of the plate.

From these equations, he derived an ordinary differential equation for the deformation of the plate and solved it by

using a finite difference method, and compared the results with those obtained by using the general-purpose commercial

code ADINA.

Thus, the geometry and parameter are the same as those of Wang (1999), i.e., L ¼ 0:75m; h ¼ 0:01m; rs ¼

7800 kg=m3; E ¼ 2:0 � 1011 Pa; rf ¼ 1000kg=m3; m ¼ 0:00113 kg=ðm sÞ; (h=L ¼ 0:0133; rs=rf ¼ 7:8). The following two

cases are considered according to the shape of the channel (see Fig. 1 for geometry and notations):
(a)
w
(x

) 
/ L

(a)

Fig.

flow

pres
uniform channel: Re1 ¼ 177.0, Re2 ¼ 354.0, Uavg1 ¼ Uavg2 ¼ 0.01 m/s, H1(x) ¼ 0.02m, H2(x) ¼ 0.04 m, Rt ¼ 5.13

� 10�4, Rf ¼ 2.53 � 10�6; $ $

(b)
 convergent channel: Re1 ¼ 318.6, Re2 ¼ 118.0, Uavg1

$
x¼0

¼ 0.012m/s, Uavg2
$
x¼0

¼ 0.0033 m/s, H1(x) ¼ (0.03—x/

75)m, H2(x) ¼ (0.04–2 x/75) m, Rt ¼ 3.59� 10�4, Rf ¼ 1.24 � 10�6;
where we use the bulk velocity of the total channel flow as the characteristic velocity of the fluid, U, which is needed in

calculating two nondimensional parameters Rt and Rf, and defined as follows:

U ¼
Uavg1

$$
x¼0

H1ð0Þ þ Uavg2

$$
x¼0

H2ð0Þ

H1ð0Þ þ H2ð0Þ
: (15)
x/L x/L
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fU
2 )
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0
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(b)

3. Comparisons of (a) displacement and (b) pressure difference with analytic solutions by Wang (1999) for steady laminar channel

: —J—, present result for the uniform channel; —&—, analytical solution by Wang (1999) for the uniform channel; —K—,

ent result for the convergent channel; —’—, analytical solution by Wang (1999) for the convergent channel.
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The bounds of the computational domain in the streamwise direction are x 2 ½0; 1:5m
 for the uniform channel and

x 2 ½0; 1:2m
 for the convergent channel. The inlet velocity profile is set to be parabolic to compare the results with the

analytic results of Wang (1999), where fully developed laminar channel flows were assumed. The traction-free condition

is set as the boundary condition at the channel exit. The beam is clamped at the left end and is free at the right end, as

can be seen in Fig. 1.

The displacements and pressure differences between the upper and the lower surfaces of the beam for the two cases

mentioned above are compared with the analytic solutions of Wang (1999) in Fig. 3. Note that w/L is very small, i.e.

O ð10�7Þ; because both E and h are relatively large, while the displacement of a clamped-free beam due to a uniformly

distributed load p0 per unit length is p0L
4/(8EI), where I ¼ bh3=12: There exists a good agreement in the case of the

uniform channel, but our results predict larger displacement and larger pressure difference in the case of the convergent

channel. As is seen in Fig. 3(b), the pressure difference nondimensionalized by the dynamic pressure in the case of the

convergent channel is 11.93, which is quite different from the value 7.68 of Wang (1999). It seems that this difference is

due to the assumption of a fully developed flow when Wang derived the analytical solution, despite the fact that both

the upper and the lower channels are convergent. To show this, the streamwise velocity profiles of both the upper and

the lower channels at the exit are shown in Fig. 4(a), where the y coordinate is normal to the beam surface. The

maximum velocities are calculated from the mass conservation when obtaining the parabolic profiles. One can see that

the velocity profiles of the present study are not parabolic but inclined toward the beam surfaces, so that the shear

stresses on both surfaces will be larger, which typically holds in the convergent channel. To be more specific, we recall

that tw ¼ �0:5hcðqp=qxÞ for a fully developed laminar channel flow of height hc. Then the larger shear stresses will in

turn increase the pressure gradients along the channel, so that the pressure differences between the inlet and the exit of

the channel will also increase ultimately.

The pressure gradients ðqp=qxÞ on the upper and the lower surfaces of the beam are compared with the analytical

solutions of Wang (1999) in Fig. 4(b), where one can see that the pressure gradients in the present study increase

rapidly, and the differences between the present results and those of Wang (1999) also increase rapidly as the free end of

the beam is reached. As mentioned earlier, the bounds of the computational domain in the streamwise direction are set

to be x 2 ½0; 1:2m
; which corresponds to one and a half times the beam length (L ¼ 0.75m), for physically more

reasonable results. A contour plot of the wall-normal velocity v around the free end of the beam is shown in Fig. 5,

where one can see that it amounts to about 10% of the bulk velocity U around the free end and cannot be neglected.

Wang (1999) did not consider the region beyond the free end of the beam and neglected the wall-normal velocity, and

simply imposed the condition that the pressures in the upper and the lower channels at the exit (x ¼ 0.75 m) should be

equal. This is the main reason why the pressure gradients of the present result are different from those of the analytic

solution of Wang (1999). If qp/qx were calculated incorrectly, the pressure, which was obtained by integrating the
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Fig. 4. Comparisons of (a) the streamwise velocity profiles at the exit and (b) the pressure gradients on the beam surfaces with the

analytical solution by Wang (1999) for a steady laminar convergent channel flow.
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pressure gradient in Wang (1999), would also be incorrect and the error might have increased due to integration. If the

pressure is incorrect, the displacement due to the pressure difference on the beam surfaces could have errors, too.

Wang (1999) showed that the results from the commercial package ADINA agree well with those from the analytical

solution. However, in laminar calculations with ADINA, constant pressure conditions were imposed both at the upper

and the lower inlets instead of the velocity conditions, and the pressure difference at the inlets was set almost equal to

that from the analytical solution (Wang, 2002). Taking all the above facts into account, one can conclude that the

analytical approach of Wang (1999) may have errors in the case of the convergent channel, while it predicts the correct

results in the case of the uniform channel.

4.2. Dynamic fluid–structure interaction in unsteady flow

Let us now consider the dynamic problem concerning the same convergent channel as in Section 4.1. The

computational domain, Reynolds numbers, and the properties of the beam are the same as in Section 4.1, i.e., L ¼

0:75m; h ¼ 0:01m; rs ¼ 7800kg=m3; E ¼ 2:0 � 1011 Pa, Re1 ¼ 318.6, Re2 ¼ 118.0. Both the fluid and the beam are

initially at rest and for t40 the parabolic velocity profiles are imposed at the inlets and traction-free conditions at the

exits.

4.2.1. Dynamic FSI at the same parameters as in static FSI

To confirm that the code developed in the present study predicts correct results in dynamic FSI problems, we

consider first the same fluid properties as in Section 4.1 [rf ¼ 1000 kg=m3; m ¼ 0:00113 kg/(m s)]. Since Rt ¼ 3:59 � 10�4

in this case, the time scale of the beam is much less than the convection time scale of the fluid so that time increment

should be very small. We set Dt ¼ 0:003 s; considering the undamped period of oscillation of the first mode of a

clamped-free beam, which is represented by

t ¼
2p

1:8752
L2

ffiffiffiffiffiffiffiffi
rsA

EI

r
: (16)

From Eq. (16), t � 0:069 s; and about 23 computations are performed per one oscillation period of the beam at the

first undamped natural frequency. It is also noted that since Rf ¼ 1:24 � 10�6 in this case, the elastic restoring force of

the beam is much larger than the inertia force of the fluid. Thus, the displacement of the beam will be very small.

The time histories of the displacement at the free end of the beam are shown in Fig. 6, where one can easily see that

the beam oscillates around the displaced position obtained from the static FSI computation in Section 4.1. From this, it

seems that the present code also predicts correct results in dynamic FSI problems. The fact that the amplitude of

oscillation is reduced with the passage of time regardless of the neglected internal damping of the beam is due to the

damping by fluid viscosity. This damping effect depends on the dynamic viscosity m and the density rf of the fluid, which

will be explained in detail in Section 4.2.2. The abscissa in Fig. 6 represents the time t nondimensionalized by t. It is seen

in Fig. 6(b) that the beam oscillates at the first undamped natural frequency during some initial periods, say, for t/to4

before the oscillation frequency is rapidly reduced. The Fourier spectrum of the data in Fig. 6(a) is shown in Fig. 7,

where the abscissa represents the frequency f, also nondimensionalized by t. Note that the dominant frequency is about
1
10

times the first undamped natural frequency. This phenomenon results from the FSI and can be explained by the

added mass concept, which will be dealt with in detail next.
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4.2.2. Damping by the fluid viscosity and the effect of the added mass

To investigate the damping by the fluid viscosity and the added mass, the following three sets of fluid properties are

tested in the convergent channel with the Reynolds numbers fixed as in Section 4.2.1 (Re1 ¼ 318.6, Re2 ¼ 118.0):

Case 1: rf ¼ 1.0 kg/m3, m ¼ 1.13� 10�4 kg/(m s), Uavg1

$$
x¼0

¼ 1.2m/s, Uavg2

$$
x¼0

¼ 0.33 m/s, Rt ¼ 1.29� 10�2,

Rf ¼ 1.24� 10�5.

Case 2: rf ¼ 1.0 kg/m3, m ¼ 1.13� 10�5 kg/(m s), Uavg1

$$
x¼0

¼ 0.12m/s, Uavg2

$$
x¼0

¼ 0.033m/s, Rt ¼ 1.29� 10�3,

Rf ¼ 1.24� 10�7.

Case 3: rf ¼ 10.0 kg/m3, m ¼ 1.13� 10�4 kg/(m s), Uavg1

$$
x¼0

¼ 0.12m/s, Uavg2

$$
x¼0

¼ 0.033m/s, Rt ¼ 1.29� 10�3,

Rf ¼ 1.24� 10�6.

In Case 2, the density is the same as in Case 1 but the dynamic viscosity is 1
10

of that in Case 1. On the other hand, in

Case 3, the dynamic viscosity is the same as in Case 1 but the density is 10 times that in Case 1. The nondimensional

parameters Rt and Rf are also given for each case, from which it is expected that the displacement and the amplitude will
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be the largest in Case 1 because Rf is the largest. The time history of the displacement at the free end of the beam during

0ot/to10 is shown in Fig. 8. As is expected, the amplitudes of oscillation become larger in the order of Cases 2, 3, and

1.

It is very difficult to know from Fig. 8 in which case the damping by the viscosity is the largest. A measure of the

damping can be represented by the logarithmic decrement d, which is often used to calculate the damping ratio z in the

free vibration of a simple mass-spring-damper system. The logarithmic decrement d is defined and related to the

damping ratio z as follows:

d ¼ ln
wi � wsteady

wiþ1 � wsteady

� �
¼

2pz

1 � z2
; (17)

where wi and wi+1 denote ith and (i+1)th local maximum values of the displacement, respectively, and wsteady is the

steady state value of the displacement as t ! 1: Although the vibration in the present study is not a free one, we use

the logarithmic decrement as a measure of damping because the definition is simple and straightforward. The

logarithmic decrement and the damping ratio calculated using Eq. (17) are shown in Fig. 9, where one can see that both

the logarithmic decrement and the damping ratio become larger in the order of Cases 2, 1, and 3. Consequently, it is

concluded that the larger the dynamic viscosity and the density of the fluid are, the larger the damping of the amplitude

of beam oscillation is, when the Reynolds number and the geometry are fixed in a two-dimensional laminar channel

divided by a plate.

Let us now turn our attention to the concept of added mass. When a body moves through a fluid, it must push a finite

mass of the fluid out of the way. If the body is accelerated, the surrounding fluid must also be accelerated. The body

behaves as if it were heavier by an amount called the added mass or hydrodynamic mass of the fluid (White, 2003), ma.

The added mass in a simple mass (m)–spring (k)–damper (c) system surrounded by a fluid can be represented as follows:

m €x þ c _x þ kx ¼ �ma €x;

ðm þ maÞ €x þ c _x þ kx ¼ 0:
(18)

As is seen in Eq. (18), the original mass-spring-damper system is changed into a new system, where the mass is increased

by ma. The natural frequency of this new system becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðm þ maÞ
p

; which is smaller than
ffiffiffiffiffiffiffiffiffi
k=m
p

: For a two-

dimensional circular cylinder of radius a, the added mass is rfpa2, which is the mass of the fluid supposedly occupying

the same area (or volume) as the cylinder, and is linearly proportional to the density of the fluid.

Therefore, when the beam under consideration is accelerated, the surrounding fluid as much as the added mass of the

beam is also accelerated, so that the dominant frequency will be smaller than the first undamped natural frequency. The

Fourier spectra of the displacement at the free end of the beam for the three test cases are shown in Fig. 10. Noting that
t / τ
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the added mass is linearly proportional to the density of the fluid for a two-dimensional circular cylinder, one can guess

that the added mass in Case 3 will be larger than those in Cases 1 and 2. It is easily seen from Fig. 10 that the dominant

frequency in Case 3 is reduced while those in Cases 1 and 2 are not (note that ft is the frequency nondimensionalized by

the first undamped natural frequency and would be equal to 1 if the beam were not damped). In fact, (ft)1 is 0.756 in

Case 3 while it is 0.963 both in Cases 1 and 2. From this result, the cause of the reduction in the dominant frequency can

be explained with the concept of the added mass.



ARTICLE IN PRESS
K. Namkoong et al. / Journal of Fluids and Structures 20 (2005) 51–69 63
For the case where the stiffness of the fluid is negligible, Blevins (1979) expressed the effect of added mass on the

natural frequency of the plate as follows:

f fluid

f air

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðma=mÞ
p ;

ma

m
¼

f air

f fluid

� �2

� 1;

(19)

where ffluid and fair are the natural frequencies of the plate in the fluid and in the air, respectively, m is the mass of the

plate, and ma is the added mass of the plate. Eq. (19) will hold true only if the fluid does not modify the plate vibration

mode shape. The magnitude of ma is a function of several variables including the density and the viscosity of the fluid,

the amplitude of vibration, the geometry of the plate, the plate’s boundary conditions, its frequency mode number, and

other factors (Paı̈doussis, 1998; Bartlett et al., 2001). Calculating the added mass using Eq. (19), one can get ma/

m ¼ 0.0789 both in Cases 1 and 2, while ma/m ¼ 0.748 in Case 3. Note that the added mass calculated from Eq. (19) in

Case 3 is almost 10 times as large as those in Cases 1 and 2. Using (ft)1 ¼ 0.109 in Fig. 7 (Section 4.2.1), one can get ma/

m ¼ 83.2, which means that the added mass is 83 times as large as that of the beam itself. This large value of added mass

is mainly due to the large density of the fluid. These results for the added mass are plotted in Fig. 11. It is easily seen in

Fig. 11(b) that the added mass is linearly proportional to the density of the fluid but independent of the viscosity of the

fluid for a clamped-free plate immersed in a two-dimensional laminar channel flow when the Reynolds number and the

geometry are fixed.

4.3. Oscillation of a vertical plate in a cavity filled with a fluid

In order to demonstrate further the validity of the present code, the oscillation of a vertical plate in a cavity filled with

a fluid is investigated in this section. A schematic describing the problem is shown in Fig. 12. Glück et al. (2001)

investigated the same problem via a three-dimensional coupled simulation; the results in the present study will be

compared with theirs, because in their study both the flow and the plate showed two-dimensional behavior, due to the

symmetric boundary conditions in the z-direction. Note that the present simulation is two-dimensional, so that the plate

can be modeled by a Bernoulli–Euler beam again. All other conditions of simulation are the same as those of Glück et

al. (2001).

The length (L), the thickness (h), and the width (b) of the plate are 1.0, 0.06, and 0.4 m, respectively. The

computational domain is taken as follows: the distance from the left wall of the cavity to the plate center plane is 10L,

the distance from the plate center plane to the right wall of the cavity is 40L, and the height of the cavity is 6L. A

computational mesh at an instant is shown in Fig. 13, where a close-up view near the plate is also shown as an inset.
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Fig. 12. A schematic describing the problem of oscillating vertical plate in a cavity filled with a fluid.
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The following material properties are used: Young’s modulus of elasticity E ¼ 2:5 � 106 Pa, density of plate material

rs ¼ 2550 kg=m3; density of the fluid rf ¼ 1 kg=m3; and three different dynamic viscosities of the fluid m ¼ 0:2; 1.0, and

5.0 kg/(m s), which result in laminar flows.

A time step (Dt) is chosen to be 0.1 s. From Eq. (17) in 4.2.2, t � 3:30 s; so that about 33 computations are performed

per oscillation period of the first mode of the plate. During the first five steps, i.e., tp0:5 s; a uniformly distributed load

of 30N/m is applied in order to excite the plate. From the sixth time step on, the beam is loaded by the reacting pressure

resulting from the fluid flow.

Fig. 14 shows the horizontal displacement of the free end of the plate for three different viscosities of the fluid, where

one can see that the higher the viscosity of the fluid is, the faster the plate is damped and reaches its initial state again.

Because the densities of the fluid is all the same in the three cases, the damping of the amplitude of the plate oscillation

will increase with the viscosity of the fluid, as explained in the previous subsection. That is, the larger the dynamic

viscosity and the density of the fluid are, the larger the damping of the amplitude of beam oscillation is. This fact is

confirmed again in Fig. 15, where the logarithmic decrement d and the damping ratio z calculated by Eq. (17) are

shown. In Fig. 16, the displacements of the free end of the beam for three different viscosities of the fluid are compared

with those of Glück et al. (2001). There exist slight discrepancies in the frequency and the amplitude of oscillation but

they decrease as the viscosity of the fluid increases. Considering that Glück et al. (2001) performed three-dimensional

simulations by using a more complex plate model (not a beam model) with Poisson’s ratio (ns ¼ 0:35) taken into

account, these slight discrepances can be considered quite acceptable.

The fluid load in the x-direction for the case of m ¼ 0:2 kg=ðm sÞ is compared with that of Glück et al. (2001) in Fig.

17, where there exist slight differences again in the frequency and the amplitude of oscillation. The fluid loads in the x-

direction for three different viscosities of the fluid are also shown in Fig. 18, where one can see that the fluid load

increases with the viscosity of the fluid.
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The Fourier spectra of the displacements and the fluid loads in the x-direction for three different viscosities of the

fluid are shown in Figs. 19(a) and (b), respectively. The Fourier spectra of Glück et al. (2001) for the case of m ¼

0:2kg=ðm sÞ are also shown for comparison. The first peak in the Fourier spectra of displacements for all three different

viscosities of the fluid in the present study occurs at ðf tÞ1 � 0:99; while it occurs at ðf tÞ1 � 1:03 in the results of Glück et

al. (2001). The difference is only about 4%, which may be negligible. The second peak in the Fourier spectra of the

displacements for all three different viscosities of the fluid in the present study occurs at ðf tÞ1 � 5:67; while it occurs at

ðf tÞ1 � 5:53 in the result of Glück et al. (2001). The difference is only about 2.5%, which may be negligible again. Note

the difference in the order of magnitude between the Fourier coefficients at the first and the second peaks. That is, the
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K. Namkoong et al. / Journal of Fluids and Structures 20 (2005) 51–6966
Fourier coefficient at the first peak is about 100 times larger than that at the second peak. This means that the

displacement curve shows almost harmonic behavior, because the first eigenfrequency is dominant. One can reconfirm

this in Figs. 14 and 16.

The first and the second peaks in the Fourier spectra of the fluid load in the x-direction occur at the same frequencies

as those of the displacements. However, the Fourier coefficient of the fluid load in the x-direction at the first peak is

only about 10 times larger than that at the second peak. This means that higher eigenmodes as well as the first

eigenmode dominate the fluid load in the x-direction. Again, one can reconfirm this in Fig. 17. Glück et al. (2001)

mentioned that ‘‘The same phenomena is described by Gasch and Knothe (1987), who compared the displacement and

the moment of the clamped support of a beam performing bending oscillations.’’

Because the density of the fluid is very small compared to that of the beam, i.e., rf =rs ¼ 1=2550 � 0:0004; the added

mass is very small and negligible. Therefore, the frequency where the first peak in the Fourier spectra occurs is almost

equal to the first undamped natural frequency (fn1), i.e., ðf tÞ1 ¼ f =f n1 � 0:99:
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5. Conclusions

Two dynamic FSI problems where the structure can be simply modeled by a Bernoulli–Euler beam were investigated:

a two-dimensional laminar divided-channel flow and oscillation of a vertical plate in a cavity filled with a fluid. A P2P1

Galerkin FEM was used for the Navier–Stokes equation with the ALE technique and a Galerkin FEM for the equation

of motion for the beam, so that these two equations were consolidated and solved using the combined formulation and

a modified explicit–implicit scheme.
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To validate the method developed in the present study, the static FSI problems, which are the same as in Wang

(1999), were examined and compared. It was shown that the present results are in good agreement with those of the

analytic solutions of Wang (1999) in the case of the uniform channel, but there are some discrepancies in the case of the

convergent channel. A clear elucidation was given for these discrepancies by considering the velocity profiles of the two

studies.

In addition to the Reynolds number, two nondimensional parameters, which govern this fluid–structure system, were

proposed by nondimensionalizing the governing equations.

Investigation of the dynamic FSI in a two-dimensional laminar divided-channel flow demonstrated that for fixed

Reynolds number and geometry the damping of the amplitude of plate oscillation increases as the dynamic viscosity

and density of the fluid increase. It is also noteworthy that the added mass is linearly proportional to the fluid density

but independent of the fluid viscosity so that the dominant frequency of the plate is reduced as the fluid density

increases.

The dynamic FSI of a vertical plate in a cavity filled with a fluid was also investigated. The results were in good

agreement with those from the three-dimensional coupled simulation of Glück et al. (2001). The added mass effect is

negligible in this case, due to the very small density of the fluid compared to the density of the plate. The displacement

curves show almost harmonic behavior, because the first eigenfrequency dominates, while the fluid load is also

influenced by higher eigenmodes.
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